Home

PSA carbon molecular sieve

PSA carbon molecular sieve

  • SLUHP-100 Molecular Sieve: The Optimal Choice for High-Purity Nitrogen Generation, Outperforming CMS330 in All Aspects
    SLUHP-100 Molecular Sieve: The Optimal Choice for High-Purity Nitrogen Generation, Outperforming CMS330 in All Aspects Jan 14, 2026
    In the field of industrial nitrogen generation, the performance of carbon molecular sieves directly determines nitrogen purity, gas production efficiency and operating costs. As a commonly used model in the market, CMS330 has maintained a certain application share for a long time. However, with technological upgrades, Chizhou Shanli, a leading enterprise in China's carbon molecular sieve industry, has launched the SLUHP-100 carbon molecular sieve.   Boasting superior separation performance, more stable quality and more cost-effective operation, this product has comprehensively outperformed CMS330. It not only surpasses the industry standards in the domestic market, but also ranks among the world's top-tier products, emerging as the preferred core material for upgrading Pressure Swing Adsorption (PSA) nitrogen generation systems.   The core competitiveness of the SLUHP-100 carbon molecular sieve lies in its precise control over "high-efficiency separation and cost-effective operation", which is also the key to its superiority over CMS330. Relying on Chizhou Shanli's independently developed micropore regulation technology, the SLUHP-100 achieves precise pore size matching. This accurate "molecular sieving effect" enables oxygen molecules to rapidly diffuse into the micropores and be adsorbed, while nitrogen molecules are efficiently retained. Thus, 99.999% high-purity nitrogen can be produced in a single step via the PSA method.   In contrast, CMS330 features a wide and imprecise micropore size distribution. It not only struggles to stably produce 99.999% high-purity nitrogen, but also experiences a significant decline in separation efficiency under low-pressure operating conditions, failing to meet the requirements of high-end industrial applications.   Beyond its core advantage of ultra-high purity output, the SLUHP-100 outperforms CMS330 across all key performance metrics, specifically reflected in two aspects: 1.Lower air-to-nitrogen ratio: Under the same adsorption pressure, the SLUHP-100 consumes less compressed air than CMS330, directly reducing the energy consumption and operating costs of nitrogen generators. 2.Lower ash content: The ash content of the SLUHP-100 is far lower than that of CMS330, which can effectively reduce the risk of molecular sieve pulverization, avoid pipeline blockage, and ensure the long-term stable operation of the nitrogen generation system. On the contrary, CMS330 is prone to pulverization after long-term use, requiring frequent shutdowns for maintenance.   If your enterprise is currently using CMS330 and facing issues such as insufficient nitrogen purity, high operating costs or frequent equipment failures, or if you plan to upgrade your nitrogen generation system, feel free to learn more about Chizhou Shanli's SLUHP-100 molecular sieve. Choose this high-quality core material that comprehensively outperforms traditional models to make your nitrogen generation system more efficient, stable and cost-effective, and safeguard your enterprise's production operations.   For more information on carbon molecular sieves, please visit www.carbon-cms.com.
  • Carbon Molecular Sieve Loading Steps
    Carbon Molecular Sieve Loading Steps Jan 08, 2026
      1.System Shutdown, Pressure Relief and Power Off Operation First, shut down the system via the nitrogen generator control system, close the compressor outlet and nitrogen generator inlet globe valves, and slowly open the pressure relief valve to relieve pressure until all pressure gauges return to zero. Finally, cut off the main power supply of the system, hang a "Equipment Maintenance, No Switching On" sign and arrange for special personnel to be on duty to avoid the risk of working under pressure or with electricity. This procedure applies to the high purity nitrogen CMS.     2. Separation of Nitrogen Outlet Pipeline and Removal of Adsorption Tower Top Cover Confirm the connection method between the nitrogen outlet pipeline and the adsorption tower, select corresponding tools to symmetrically remove the connecting components. After separation, seal the pipeline port with a sealing plug to prevent debris from entering. Two personnel shall cooperate to remove the top cover of the adsorption tower, place it stably and record the installation position to avoid collision damage.     3. Thorough Cleaning of Spent Carbon Molecular Sieve in the Packed Tower Use tools such as buckets, vacuum cleaners to clean the spent carbon molecular sieve in the tower and collect it into a special waste barrel; purge residual debris in corners with low-pressure compressed air and cooperate with a vacuum cleaner to ensure no residue. Operators shall wear protective equipment, keep the area well-ventilated, and dispose of the spent molecular sieve in accordance with specifications.     4. Integrity Inspection of Wire Mesh and Palm Mat in the Tower Check whether the filter wire mesh in the tower is damaged or loose, and whether the mesh size matches; check whether the sealing palm mat is aged or damaged. If there are problems, replace with components of the same specification in a timely manner, and check the integrity of the fixing components to ensure loading tightness and prevent molecular sieve leakage.     5. Confirmation of Residues in the Tower and Preparation Before Loading Reconfirm that there is no residue, debris and the tower is dry; if there is water stain, purge and dry it. Prepare new carbon molecular sieve, activated alumina and other materials as well as loading tools in advance to ensure the materials are dry and intact, the tools are in normal condition, and the operators are properly protected.     6. Bottom Paving and Preparation for Layered Loading Lay and fix a new palm mat at the bottom of the tower to ensure tight fit without gaps; evenly pave a 10-20cm thick layer of activated alumina on top. After checking that the paving is flat and not loose, install a loading hopper (with the outlet extending to the middle of the tower) to prepare for loading carbon molecular sieve.     7. Carbon Molecular Sieve Loading, Vibration Compaction and Top Cover Installation Slowly and evenly pour new carbon molecular sieve through the loading hopper, control the feeding speed to avoid particle breakage. When loading is nearly at the top of the tower, use vibration equipment to vibrate in all directions for 5-10 minutes for compaction; if there is settlement, replenish materials in a timely manner. Finally, load until it exceeds the tower edge by 5-10cm, lay the top palm mat, then stably cover the top cover and symmetrically tighten the fixing bolts to ensure good sealing.   For more information on carbon molecular sieves, please visit www.carbon-cms.com.
  • Technical Requirements for Carbon Molecular Sieves in Nitrogen Generators
    Technical Requirements for Carbon Molecular Sieves in Nitrogen Generators Dec 15, 2025
    1.Stable adsorption performance. The carbon molecular sieve of a nitrogen generator must have excellent selective adsorption capacity, and its adsorption performance and selectivity must not undergo significant changes during long-term operation.   2.Uniform quality and consistent particle size. The carbon molecular sieve of a nitrogen generator needs to ensure uniform particle size, so as to guarantee the uniform transmission of gas molecules in the molecular sieve channels and avoid phenomena such as "streamline effect" and "hot spot effect".   3.Large specific surface area and uniform pore size distribution. The carbon molecular sieve of a nitrogen generator has a large specific surface area and reasonable pore size distribution, so as to increase adsorption capacity and improve adsorption rate.   4.Strong heat resistance and chemical resistance. The carbon molecular sieve of a nitrogen generator needs to have certain heat resistance and chemical resistance, and be able to be used for a long time in environments with high temperature, high pressure and harmful gases.   5.Low cost and high stability. The carbon molecular sieve of a nitrogen generator needs to be relatively low in price, high in durability and have long-term stability to meet the requirements of industrial applications.   For more information ,please click www.carbon-cms.com.
Qianjiang Industrial Zone, Guichi district chizhou city, Anhui province, China
Quick Links
Subscribe

Please Read On, Stay Posted, Subscribe, And We Welcome You To Tell Us What You Think.

submit
f

Copyright @ 2026 Chizhou Shanli Molecular Sieve Co., Ltd. All Rights Reserved. Network Supported

blog Sitemap Xml Privacy Policy

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

Contact Us